
Agreement between the theoretical dependences obtained, the results of numerical compu- 
tations, and the experimental data indicates the effectiveness of the asymptotic method 
developed. 

The authors are grateful to K. A. Volosov for aid in performing the numerical computations. 
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SPECTRAL STRUCTURE OF TURBULENT CONVECTION 

I. V. Nikitina and A. G. Sazontov UDC 532.5 

A central problem in the theory of evolution of strong turbulence is, as is well known, 
the determination of the spectrum of turbulence. Contemporary ideas on scale-invariant 
spectra are based on Kolmogorov's ideas, introducing the hypothesis of the self-similar nature 
of the spectrum in an inertial interval and the locality of turbulence [i]. For a long time 
similarity methods were essentially the only means of theoretical analysis for determining 
the spectral structure. However, due to the intermittent nature of turbulence dimensionality 
arguments often do not finally permit finding the form of the spectrum [2], therefore there 
have recently been numerous attempts at solving the problem of the Kolmogorov spectrum by 
starting directly from the equations of hydrodynamics, 

The increasing interest in self-similar spectra is obviously related to two circum- 
stances. First, the theory of scale-invariant spectra in phase transition problems has been 
substantially developed lately. Thus, the renormalized-group approach and consideration of 
problems in arbitrary dimensiona!ity have been powerful means of studying critical effects 
[3, 4]; these ideas have by now been successfully transferred to strong turbulence [5, 6]. 
Secondly, the method of conformal mappings [7, 8], first suggested in [9] (see also the 
review [i0]) for finding exact power-law solutions in the theory of weak turbulence, is quite 
fruitful in solving problems of the Ko!mogorov spectrum. 

So far all results on the spectra of strong turbulence referred to the case of an iso- 
tropic medium.* In reality the effect of anisotropy, related, for example, to the action of 
gravity forces, is important. In the present paper we solve the problem of finding anisotropic 
spectra of turbulent convection (the exceptional direction is the vertical). 

The effect of convection plays a large role in many physical processes. For example, 
convective effects underlie a whole variety of solar phenomena [12]; convection is one of the 

*Within weak turbulence anisotropic spectra were discussed in [ii]. 

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
88-97, July-August, 1981. Original article submitted May 5, 1980. 
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basic factors forming the structure of the active layer in the ocean [13]; and convective 
processes affect significantly the dynamics of atmospheric motions [14]. As a rule, in all 
these phenomena convection is turbulent, and in this connection the problem of the spectrum 
of turbulent convection is important. In the present work we find the anisotropic spectra 
of turbulent kinetic energy and the temperature pulsations corresponding to a constant heat 
flow, and we prove the locality properties of the distributions obtained. 

To describe convection in an infinite layer of a viscous incompressible liquid we use 
the dimensionless equations of motion in the Boussinesq approximation [15] for the velocity 
field v and the temperature deviation T from the state of hydrostatic equilibrium To = --Az + 
Tx (A is the equilibrium gradient t and T~ is the temperature at lowest boundary of the layer): 

Pr-~dv/dt = - - V P  + Av  + R a T . ~ ;  (I) 

OT/Ot + ( v v ) T  = AT + v.ez; (2) 

div v = 0, (3) 

where Ra = g ~ A h V v  z is the Rayleigh number, Pr = v/X is the Prandtl number, ez is a unit vector 
along the z-axis, ~ is the thermal expansion coefficient, 9 and X are the coefficients of 
viscosity and thermal conductivity, and h is the layer width~ In these equations time is 
measured in units of h=/v, velocity in units of x/h, temperature in units of Ah, and pressure 
in units of OovX/h 2 (0o is the unperturbed density)~ 

We use the Rayleigh boundary conditions: 

w = O, Ovj_/Oz = O, T = 0 at z = 0 and z = 1. (4) 

The temperature field T(r• z, t) can be represented as a sum of the field ~(z, t) 
over the horizontal field and a deviation from this averaged value @{r• z, t): 

T(r•  z, t) = T(z, t) + O(r~, z, t )  
/ 

(the velocity field has a vanishing average component). 

From Eq. (2) it follows for ~ and 0 that 

oo AO = aY 
o ,  - v - 

averaged 

(2a) 

0_Z a2~ a (~-~), (2b) 
St  -- az z Oz 

where w is the vertical velocity component, and the bar denotes horizontal averaging. In what 
follows we assume that the condition Pr >>i is satisfied, in which case the inertial term in 
Eq. (i) can be neglected and the temperature fluctuation can be related to the velocity field 

--vAv : g ~ T - -  t (5) 

We seek a solution of system (1)-(3) with boundary conditions (4) 
pansion in eigenfunctions of the linear boundary-value problem: 

w(r.,z,t) ~ S hz ~k.r.L+~zZ = Wk~ (t) e dkj_, 
kz=-:= 

T ( r j . , z , t )  ---- ~ y ~ %  ,., ~k r ~ + i ~ z Z _ . i k j ,  t~)e m aK~, 
hz~--oo 

"~ k~"kz kz , . eikmr~+{hzZ 
u i ( r ~ , z ,  t) = -- ~ " " k  

kz r kz q~*hz kz --kz ~z --kz 
Wk.,, = W--kL, Tk. = ~--ku, Wk• = -- Wk~., Tk.L ---- -- TkL, 

where k~ is the wave vector in the horizontal plane, and k z 

in the form of an ex- 

(6) 

= ~n/h is the quantized magnitude 
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of the z-component momentum (n is a discrete number, characterizing the number of half-waves 

stacked vertically). 

It follows from (5) that 

. . . . . . .  , = + (7) 
WkJ- v k ~' T k ~ ,  U s  i ~ k4 

Using (7), we obtain for the Fourier component of the temperature field the following equation 

( L  -- J " I, " "~- 5 k ,  i kL2) 3 ' -  (8) O f k ~  ~'k• %!- -2-- ~ k-i~L~kzo, ik'zZkl o - -1  - 2  

~ ' + ; ~ ' l + k ' 2  = 0 "  " 7 ~ --'~ 
Ot 

where 

h z Xk 2, h'~f~ 

' ~ ,  -~ -,~ g'5 1 I__ZL_ ~ -~ - -'~ i V~,I~' r = - 4 -  L ,;,:~ [ .:,':T- ,:> - -  2 ":~I ,,,,~ " - - " - -=~  ~ ' - -  T ~:~ - - T ' ~ : ~  '",- I 2 --' --i --2 , ~\ --2 " ' hz'h2 

TThz kZlhZ,~ _.k z hzlhz 2 h z {hz h z m-k~ k 2 k  I T h e  m a t r i x  e l e m e n t  o f  t h e  i n t e r a c t i o n  * k •  k •  p o s s e s s e s  t h e  s y m m e t r y  k a l k ~  = Vk•  

and satisfies the Jacobi identity 

(9) 

being a consequence of the conservation law of heat flux. 

In what follows we will need the asymptotic matrix element in the two limiting cases: 

zhz kz hz 
kz >> k~ and kz << kl . In this case I k• k~k~2 is a homogeneous function of its arguments 

w h i l e  f o r  k z > > k ~  , t = 2 ,  r = - - 3 ,  a n d  f o r  k z < < k ~  t = - - 2 ,  r = 1. 

A specific problem is the presence of a mean temperature field, described by a vanishing 
spatial harmonic in (8). 

The presence of an average component complicates the statistical treatment within Eq. 
(8), therefore it is more convenient to reformulate the problem in terms of the vertical 
velocity component, having a vanishing mean value: 

Ow~. z (~ ks .4.4 ~ Ih-~-: *k:. *k z 
, h. i~.- i "~2 j ~ kak~ g k  z k'} k", ~k, 1~vk, 2 .< 

hz't-hz l-- hz2=O ]r ]~12 '-- "1 -2  '-1 -'2 

• 6 (k ,_  @- k z l  + ki_~) d k i l d k •  r 

(io) 

We are interested in the evolution regime of turbulent convection. As indicated by experi- 
ments (see, e.g., [16]), for Pr > 5 this regime occurs for Ra 5-105 . First we consider 
qualitatively the structure of turbulent convection. The heat excess in the lower layer is 
transferred by the motion of vortices of large sizes. These vortices exist for a time not 
longer than the time of liquid motion in the neighborhood of vortices, and therefore they 
do not succeed in carrying up the heat excess to the upper boundary of the layer. Large- 
scale vortices decay more finely, and, thus, the whole region of turbulent convection consists 
of an ensemble of vortices of different scales. Since vortices are subject to the action of 
gravity forces, turbulence has an anisotropic nature (with the exceptional direction being 
the vertical). To describe the turbulence we introduce the following characteristics: 
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the spectral kinetic energy density 

F(k ,  t) = ~ u • 1 7 7 1 7 7  • -4-' Wk~m,:.~/ 

and the spectral temperature pulsation density 

(k, t) 
- -  ~ 2. --~/ 

w h e r e  < > i s  t h e  a v e r a g e  o v e r  t h e  s t a t i s t i c a l  e n s e m b l e .  

Taking into account (7), (6), the following relations can be obtained for F(k, t) and 
FT(k , t) : 

F (k, t) = k'--~ \ W k •  / -~" i " ' 

Thus, knowledgeof the quantity I _ = - ~ / / ) k . L / / ~ k l _ / /  makes it possible to determine the required 

c h a r a c t e r i s t i c s .  From Eq.  (10)  i t  f o l l o w s  f o r  I t h a t  

~'~ /,.2 b464 OS~ . ~ . h ~ .  I '~176176 k~k~ k=hzlk= ~ s l,~ ~ k  
O, ----Z?k-L'k• J ck: k' v~.l,%,,• , ,k•177177 • 1 7 7  (11) Z 

h~+hZl+kZ2=O i I J-~ 

where 

kzkzlkz / "  hz hzl . hz2 "~ 
kd_k l.lk&2 ~ ~Wk.LWkd . l t t . - ' k&2~ .  

To study the statistical characteristics of Eq. (i0) it is convenient to use Wyld's 

h~ 
diagram technique [17], using two quantities, the spectral density /k~ and the generalized 

h~ 
Green's function Gk~. First-order perturbation theory corresponds to Kraichnan's model [18] 

of direct interactions.* As shown in [22], however, this approximation enhances the effect 
of large-scale motions on the evolution of small-scale inhomogeneities and leads to a spectrum 
in disagreement with the Kolmogorov spectrum, which was quite well verified experimentally 
[2]. 

Some of the most diverging diagrams, describing transport, were summed in [8], while the 
improved equations of direct interactions already contain solutions with the Kolmogorov index 
values [23]. 

For the case under consideration the improved equations in the k-m representation are 

" 
= Gk• Qbk_,~, 

kz (0) " kz .~hz ~-1 
Gk.o~ -- -- ~'fk• -- z-k• , - 

hz * I ' ~ h  Ih z h z 12 h z h z 

k Zl, K -  L '  a ,  z2 

x [8 (q + ql + q2) ~k~,-(~zl+kz2) - -  6 (q + ql) 8h~,--h~,l, 

*As applied to the whole system (I), (2a), (2b), the equations of direct interactions were 
formulated in [19-21]. 
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~h z [hzlhz 2 ~/{z 1 hzhz hz hZ 
~kj_r ~ _ ~_ -- 

hz][' ~z 2 

where 
L2 /,4/.4 Tfhz lhZlhZ 2 

q =  (k• iYh~ ]khkz2 " •  

irhzhzlhz 2 k 
We f u r t h e r  e x p r e s s  t h e  t r i p l e  e o r r e l a t o r  . k i k •  k• i n  t h e  fo rm o f  a power  s e r i e s  i n  Iq  "z and 

G kz. In this case Eq. (ii) is rewritten within the direct interaction model in the form 

hz 
Ofkj_ hz hz ) i ~ ~ ~hz  kzlt{z'~ 

at -- 2?k l l k  • -V--~- Im ~ ] dq~dq~_doWk• lk~_k'lo X 
hz+hzl +hz2=O * 

(13) 

X Vk Lik./lk• *'~q "Lql ~q2 ' V k i 2 l k L k i  1 ~q2 -q  --qi r k L  1 k i 2 k •  q2 ;q  J u (q -~- ql -~- ~'2) 6hz--(hzl+hz2).  

Equation (13) is similar to the kinetic equation for waves in the theory of weak turbulence| 

We are interested in solving Eq. (13) in the inertial interval, where the effect of the 
energy-containing region and the dissipation region can be neglected, and the main contribution 
to formation of nonequilibrium spectral flows is provided by the collision integral. The 
applicability limit of this treatment is discussed below. 

We initially determine the stationary spectra from dimensionality considerations. 
this we use the Kolmogorov hypothesis concerning the heat flow: 

For 

eT -~ = const, (14) 
Tint 

where Tin t is the characteristic time of nonlinear temperature pulsation interactions. 

From Eq. (8) one can estimate 

We then obtain from (14), (15) 

|. 

Using Eq. (7) for F(k), we have 

(15) 

(16) 

F (k) .213 { . '~ I .  ~ 4131~-~tmz~-(~r+3)/s~ -~ 
" "  ~T ' , S e ' !  "~ l  . . . . .  (17) 

In the limiting cases, when kz>> ks or kz<<k., Eqs. (16), (17) are, respectively, 

FT (k) ~ kT_~/3k75/3, F (k) ~ k-14/~k75/3 (k~ << k_,); (18) 

F~ (k) N kT~o%L F (k) - -  ki~%7 ~ (k~ >> k• (19) 

For an arbitrary relation between k z and k i dimensionality considerations can give one- 
dimensional spectra (depending on [kl): 

Fr(k) ,-,.k-7/3, F(k) ,~ k-~gf. 

In this case the nature of the angular distribution, i.e., the nature of spectral ansisotropy, 
remains undetermined. 
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We note that the spectra obtained are essentially based on the locality hypothesis. 

We determine analytically the stationary spectra of turbulent convection. For this it 
is necessary to find the accurate solutions of Eqs. (12), (13). Due to the separateness of 
the vertical direction it is natural to seek a distribution dependent on k z and k i. At the 
present time only one method is known of finding exact solutions, based on the factorization 
method [i0], while symmetry and homogeneity properties of the interaction matrix elements are 
widely used. In the given case, however, this method cannot be applied directly, since 

�9 ~hz Ihzlhz ~ 
~z]~i k!2 is not a homogeneous function of k z and k z in the whole wave number interval, and 

the factorization procedure can be carried out only in the limiting cases, when either kz >> km 
or kz << k• In these limiting cases we find solutions of Eqs. (12), (13), transforming in 
advance in them from summation over k z to integration: 

hz 

The solution of these equations is sought in self-similar form 

~ = - -  I~z~ = k ~ _ ~  f " (20)  

The first two relations between the unknown indices are obtained from the Dyson equation (12) 

2 s - ~ ( z - -  2~ + 2, 2p + [5 ----- 2~-~ 1, (21)  

% 
where ~ = O, ~ = i both for k z <<k z kz>>k• and for kz>>kx (~ and r are the homogeneity powers 

~h z hZllCZ 2 
of the matrix element Vk• ki~kl 2 in the cases under consideration). 

The following two relations between s, a, p, and ~ are obtained by solving the stationary 

equations (13) 

_~ h~ ~ f ~  Ih~l~ a ~ r ~ l i ~  ~ 

hz2 }:Zh~. 1, dZ21~ZI hzl ~'fihZl Ikz2kz l'1~'zl{'hz2Yhz~ ' (kz /gzl-~ kz2 ) O. 
+ •177 q2 q q~ +'kl~Iki~k~q~q2~qj6(q+~1- q2) 5 § 

For this we carry out a factoriza~ion, introducing a joint conformal transformation in 
k i and kz, multiplying in advance the integrand in (22) by kS/k ~ for symmetrization: 

( k L (0 rl 

In this case the second term in (22) transforms on the scale-invariant spectrum (20) into the 

/'k• ~/ k z "~v -- ~ ' _9 2~ while t 2,~ i first with a factor ~) ~-~z2,) , where x = 2-i-~, 4--s--2~; y = ~- --p-- = --- 

for kz<< k~ and t---2, r = 5 for :~z>>k• (t and r are the homogeneity powers of the 

quantity vkilkZlki 2- k~ik212Fk • k• ~:i2 in the cases under consideration). The third term in (22) 

is similarly transformed. 

As a result the integrand function acquires the form 
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' t Z 2 ~ ~r Zr  o V k . _ [ k l l k _  2 
i. 't, k'~ i ' - -~..L.,  : ~ ',/~ie , ' v ~ :  -"- - -1 

\ --I ~ 2  / 

/~z2)' 

The expression in the curly brackets vanishes for x = y = 0 by identity (9). The conditions 
x = y = 0 together with relations (21) lead to the following values for the indices: 

cz = i4/3, t5 = 5/3, s = --~/ '3,  p = 2/3 for ]:z << ]c, 

= 2'3, 4/3, = --2 for kz>>1~. --, ~=7, s= p 

while for the spatial spectra F(k) and FT(k) we obtain the solutions (18), (19) found earlier 
by dimensionality arguments. We stress once more that the factorization procedure applies 
only to the limiting cases, when either k z ~,kj or kz>>k• as only in this case is the 
matrix element a bihomogeneous function of its arguments~ 

For the results obtained to have a physical.meaning it is necessary to prove locality 
of turbulence. The latter implies that the interaction of modes with scales of the same order 
is much stronger than mode interaction of different scales. Formally the property of local- 
ity implies that the integrals in (22) converge on the spectra obtained. We consider initial- 
ly convergence in the regions kil<~.~i and kS<<~z(kl ~ k i , k z 2 ~ k z ) .  

In this case the most dangerous terms (with which most of the divergence is related) 

~z 
are the terms proportional to fk ~ . 

--I 

For small ~z~ and kz~, using property (9) and taking into account that Gq =-G~q, 
these terms are collected in the expression 

(' ~ _ dk• k~ ;":zl I}l"z-/:z ?~z ~:zl~z ,-;~zz 
j ]/4k  --k 
0 0 _ _L I -L i 

(23) 

T ? Z  [hz--hz 
S i n c e  t h e  r e l a t i o n  . k i ~ [ k i _ k _  ' - - 0  i s  s a t i s f i e d  e x a c t l y ,  t h i s  g u a r a n t e e s  c o n v e r g e n c e  o f  t h e  

i n t e g r a l s  (23)  and  i m p l i e s  l o c a l i t y  o f  s p e c t r a  i n  t h e  r e g i o n  c o n s i d e r e d .  

C o n s i d e r  c o n v e r g e n c e  i n  t h e  r e g i o n s  k i p  k i > > k •  and  k 5 ,  k~2>>kz. I n  t h i s  c a s e  t h e  m o s t  

d a n g e r o u s  t e r m s  a r e  t h o s e  l i n e a r  i n  rh5 and rhz~ . We o b t a i n  f o r  t hem i n t e g r a l s  o f  t h e  f o r m  ~ k !  1 , " L k !  2 

oo 

~ dk~ i k4 [ - - k •  -,~. . 

Convergence of integrals at the upper limit is always guaranteed by the fact that 

V ~z ~:z1-~zl --~0 Thus the spectra found are local~ 
ki{kil--k 1 " , 

We clarify the applicability limits of the solutions obtained~ We first turn attention 
to the fact that, as follows from (5), for Pr >>I the inertia forces are negligible and Archi- 
medes forces are statistically counterbalanced by molecular forces~ In this case motions of 
all scales are subject to action of viscosity, and the Kolmogorov portion of the spectrum 
F(k) ~ k1:/3 is absent. For sufficiently small scales viscosity appears to have a tendency 
to isotropy. The minimal scale, starting with which this effect becomes important, can be 
determined by comparing the characteristic dissipation time due to viscosity in the scale 
I ~ ~ 12~ with the characteristic time of convective rise of the corresponding scale under 
the action of the Archimedes force %onv ~ l/vz. Using the relation of (5) 
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and the relation ev~.~ 
T~vz 

l = c o n s t ,  

v v l / l  2 "~ g ~ T z  

one can find from the condition I: v ~ %onv  

,v~lS 

This expression can also be obtained directly from dimensionalit~ considerations, if it is 
assumed that the quantity icr depends only on the parameters g, B, v, and e T. Thus, for large 
Pr the anisotropic spectra found (16), (17) will be realized for up to scale ~cr- Vortices 
with scales from Icr to k -: dis' where molecular thermal conductivity becomes important, will 
be practically isotropic. 

In an isotropic interval of scales, solving Eq. (22) averaged over angles, one obtains 
the following expression for the spatial spectrum of the vertical velocity component: 

(24) 

In this case the spectra of kinetic energy and temperature pulsations in spherical normal- 
ization acquire the form 

E~(k) N k-~l ~ and E ( k )  ~-, k - W  3. (25) 

Spectral characteristics of this shape were obtained in [24] by numerical solution of semi- 
empirical equations of energy balance and temperature pulsations. The isotropic spectra 

k-X (24), (25) are realized up to the scale dis' which can be estimated by considering the 
problem with a source: 

2?k. Ik  = / s t .  

A solution of type (24) is valid until the collision integral on this spectrum becomes 
comparable with the damping term (in the region of large k y~ N %k ~) 

2. Bk~-1913 ~ iz  , l a / g ~ l a - - 7  

o r  

kd,~ ~ [ Bli~ (~1~i~1~)~i31318 
L " ~ 7  " " J " 

For k > kdi s the solution drops off quickly. To determine the constant B we use the heat 
flow conservation law: 

oo 

( .. ?hk4Ihk2dk = O. 
0 

We have 

hdis 
7 B ~ 3 n . 8 / 3  

T Z~h 'a i s ,  
'6 

where Yo is the characteristic value of the increment) and ko is the characteristic scale of 
the instability region. Taking Yo ~ X Ra/~=h2, ko m (~/h)r we find 

5 2 4  



The whole treatment is valid if there exists a sufficiently large transparency region, 
i.e., if kdi s ~ ko. Calculating kdi s gives the condition 

Ra ~7 10 ~. 

For turbulent convection this is certainly satisfied. 

The authors are grateful to M. I. Rabinovich for discussing the results and for useful 
remarks. 
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